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Abstract

We show how the compound matrix method can be used to produce eigenfunctions as well as eigenvalues for bifurca-
tion problems in non-linear elasticity. For typical problems in elasticity the boundary conditions require a different treat-
ment to that required for typical problems in fluid mechanics. For elasticity problems we have to use an additional
shooting method to ensure that the boundary conditions are satisfied.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

The compound matrix method introduced by Ng and Reid [1] has proved very successful for determining
critical parameters (eigenvalues) for homogeneous problems in fluid mechanics, in particular for stiff problems
such as the Orr–Sommerfeld equations. The related problem of determining the corresponding eigenfunctions
from the compound matrix variables has been addressed by Ng and Reid [2] and also by Straughan and
Walker [3]. In both [2,3] a fourth order problem was considered. In [2] the system was assumed to be formu-
lated as a single fourth order equation while in [3] the more natural assumption of two second order equations
was used. However, both approaches are essentially equivalent. To find the eigenfunction the process given in
[2,3] is as follows. Once the critical parameter (eigenvalue) has been found, a new differential equation is pro-
posed whose coefficients are the previously determined compound matrix variables. It is then proved, via an
identity, that the solution to this new equation is also a solution to the original problem. Attention is then
focused on the boundary conditions for the original problem and this raises some difficulties due to incompat-
ibilities of the boundary conditions and the asymptotic solution to the new eigenfunction equation. These dif-
ficulties are resolved by integrating the new eigenfunction equation inwards towards the boundary layer. The
asymptotic form of the new eigenfunction equation now guarantees that the boundary conditions for the
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original problem will be satisfied automatically. Unfortunately this method does not apply to problems in elas-
ticity due to the quite different nature of the typical boundary conditions.

Bifurcation problems in elasticity require a similar numerical approach. There are many problems of inter-
est where the incremental partial differential equations can be reduced to a fourth order ordinary differential
system through the use of symmetry and separation of variables, for example. Normally stiffness is not a prob-
lem and a simple determinantal method such as that proposed in [4] is adequate. Although the numerical val-
ues of the determinant involved can be very large, particularly for higher order problems. In any event, the
ease of implementation and robustness of the compound matrix method has led to it being the method of
choice for more recent problems [5]. For many problems we only require the critical parameter (often referred
to as the eigenvalue) for the problem. However, for some problems the corresponding eigenfunction is
required as a fundamental part of the overall solution, see [6], for example, which we will consider in more
detail below and which provided the motivation for this work. We then have the problem of determining
the corresponding eigenfunction. The main differences when compared to typical fluid mechanics problems,
as typified in [2,3], are that the coefficients of the original differential equations and the boundary conditions
are more complicated as they contain combinations of instantaneous moduli (and possibly their derivatives)
which, in turn, contain the desired critical parameter (which may typically be a loading or deformation param-
eter, a geometric parameter or perhaps a material parameter from the strain–energy function) in some com-
plicated manner. We find that we have to do some additional work to ensure that the boundary conditions of
the original problem are satisfied.

In this paper we consider what might be regarded as a typical problem from non-linear elasticity. In Section
2 we describe the basic compound matrix method for such a system of two simultaneous second order ordin-
ary differential equations. We then apply the eigenfunction method described in [2,3] and give a direct proof
that the solution to the new second order eigenfunction equation is also a solution of the original problem.
This is an alternative proof to that given by Straughan and Walker [3]. We then consider the boundary con-
ditions and find that we have to develop a new method of solution. The method that we formulate requires an
additional shooting method when compared to the typical fluid problem. We show through examples that our
new compound matrix method works very well.

In the examples that we consider below we will compare results from three different methods. The naive
determinantal method, an exact solution (which still requires numerical evaluation in the non-trivial example)
and the compound matrix method. There are other methods that we might consider. In particular the Cheby-
shev tau method [3]. However, this will not be particularly easy to implement for elasticity problems due to the
nature of the coefficients in both the differential equations and the boundary conditions. A modification of the
determinantal method has been proposed in [7]. This method avoids the numerical evaluation of a determinant
but requires the symbolic differentiation of one. For typical problems in elasticity this will require the taking
derivatives of the coefficients of the boundary conditions. This can involve a significant amount of work and
so we do not consider it here.

2. Compound matrix method

Here we consider two second order equations for f ðxÞ, hðxÞ in the form
f 00 ¼ a1f þ a2f 0 þ a3hþ a4h0; ð1Þ
h00 ¼ c1f þ c2f 0 þ c3hþ c4h0; ð2Þ
where the prime denotes differentiation with respect to x and the coefficients ai, ci, i ¼ 1 . . . 4, will depend on
the parameter k, say, that we are looking for and, in general, on x. We also impose the boundary conditions
a1f 0 þ a2f þ a3h ¼ 0; x ¼ a; ð3Þ
b1h0 þ b2f þ b3h ¼ 0; x ¼ a ð4Þ
and
c1f 0 þ c2f þ c3h ¼ 0; x ¼ b; ð5Þ
d1h0 þ d2f þ d3h ¼ 0; x ¼ b: ð6Þ
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The coefficients in the boundary conditions will also depend on the parameter k, as will the ends of the
range of integration a and b. Typically for problems in elasticity we have the same two boundary conditions
to be applied at both end of the range and so c1 ¼ a1 etc. We suppose that the Eqs. (1) and (2) are solved, in
principle, with two linearly independent initial conditions (at x ¼ a) which ensure that the boundary condi-
tions (3) and (4) are satisfied. The two solutions thus obtained are labelled f 1, f 2, h1 and h2. The full solution
can then be written
f ðxÞ ¼ C1f 1ðxÞ þ C2f 2ðxÞ ð7Þ

and
hðxÞ ¼ C1h1ðxÞ þ C2h2ðxÞ; ð8Þ

where C1 and C2 arbitrary constants. We now introduce six new compound matrix variables /iðxÞ, defined by
2 � 2 determinants
/1 ¼
f 1 f 2

f 10 f 20

�����
�����; /2 ¼

f 1 f 2

h1 h2

�����
�����; /3 ¼

f 1 f 2

h10 h20

�����
�����;

/4 ¼
f 10 f 20

h1 h2

�����
�����; /5 ¼

f 10 f 20

h10 h20

�����
�����; /6 ¼

h1 h2

h10 h20

�����
�����:

ð9Þ
Next we differentiate (9) and use (1) and (2) with f and h replaced with f 1, etc., as required, to obtain the com-
pound matrix differential equations
/01 ¼ a2/1 þ a3/2 þ a4/3;

/02 ¼ /3 þ /4;

/03 ¼ /5 þ c2/1 þ c3/2 þ c4/3;

/04 ¼ /5 þ a1/2 þ a2/4 � a4/6;

/05 ¼ a1/3 þ a2/5 þ a3/6 � c1/1 þ c3/4 þ c4/5;

/06 ¼ �c1/2 � c2/4 þ c4/6:

ð10Þ
Now using (3), (4), arbitrarily normalising /2ðaÞ ¼ 1 and assuming that a1ðaÞ 6¼ 0 and b1ðaÞ 6¼ 0 we have the
initial conditions at x ¼ a
/1 ¼ �a3=a1;

/2 ¼ 1;

/3 ¼ �b3=b1;

/4 ¼ �a2=a1;

/5 ¼ ða2b3 � a3b2Þ=a1b1;

/6 ¼ b2=b1:

ð11Þ
We note that when a1 and or b1 is zero at x ¼ a we can still find suitable initial conditions without any diffi-
culty. Typically the initial conditions for problems in fluids would be f ðaÞ ¼ hðaÞ ¼ 0 which leads to /i ¼ 0
except for /5 which would be set to unity, see Straughan and Walker [3], for example.

It remains to ensure that the boundary conditions at x ¼ b are satisfied. We use the solution (7) and (8) and
the derivatives of these equations
f 0 ¼ C1f 10 þ C2f 20 ð12Þ
and
h0 ¼ C1h10 þ C2h20 : ð13Þ
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If we substitute (7), (8) and (12) and (13) into the boundary conditions (5 and 6) we have
c1f 10 þ c2f 1 þ c3h1 c1f 20 þ c2f 2 þ c3h2

d1h10 þ d2f 1 þ d3h1 d1h20 þ d2f 2 þ d3h2

" #
C1

C2

� �
¼ 0; x ¼ b: ð14Þ
We then require the 2 � 2 determinant of the coefficient matrix in (14) to be zero for the existence of non-triv-
ial solutions. The 2 � 2 determinant can be written in terms of /i and setting this to be zero gives us our target
condition
c1ðd1/5 � d2/1 þ d3/4Þ þ c2ðd1/3 þ d3/2Þ þ c3ðd1/6 � d2/2Þ ¼ 0; x ¼ b: ð15Þ

For comparison, we note that the target condition for the fluid problem considered by Straughan and

Walker [3] was /2ðbÞ ¼ 0. At this point we need to adjust the value of our parameter k to ensure that (15)
is satisfied. This is accomplished by using the usual shooting method.

3. Compound matrix eigenfunction

Now suppose that we have found a critical value of our parameter k so that (10) with (11) integrate to give
(15). We can then arrange to obtain values of /iðxÞ for any x 2 ½a; b�. The method for determining the corre-
sponding eigenfunctions starts by formally solving (7) and (8) for the constants C1 and C2 and then substitut-
ing these values into (12) and (13). We then have
/2f 0 ¼ /4f þ /1h ð16Þ

and
/2h0 ¼ �/6f þ /3h; ð17Þ

having multiplied by /2 which we assume is non-zero throughout the range x 2 ða; bÞ. We recall that we arbi-
trarily set /2ðaÞ ¼ 1. If /2 ¼ 0 at some point x ¼ x1, say, then the constants C1 and C2 in (7) and (8) would not
exist and so we would not have a solution for f and h. Eqs. (16) and (17) are then the eigenfunction equations
that we use to determine f and h.

If we consider (16) and (17) at x ¼ a we can substitute the initial conditions for the /i’s from (11) and we see
that the initial conditions (3), (4) for the original problem are satisfied. Thus we are free to impose any initial
conditions on f ðaÞ and hðaÞ. To normalise the solution we set
f ðaÞ ¼ 1:
As we shall see below we must choose a particular value for hðaÞ (ha say) in order that the remaining boundary
conditions (5) and (6) are satisfied.

Firstly we prove that a solution to (16) and (17) with initial conditions f ðaÞ ¼ 1 and hðaÞ ¼ ha is also a solu-
tion to the original problem (1) and (2). This is an alternative, more direct, proof to that given by Straughan
and Walker [3] (which, in turn, used the results given in [2]). We shall focus attention on the equation for f but,
as will be obvious, the same argument can be used for the other equation. First we differentiate (16) to obtain
/2f 00 þ /02f 0 ¼ /04f þ /01hþ /4f 0 þ /1h0: ð18Þ

Now use Eq. (10) to substitute for the /i derivatives so that
/2f 00 ¼ �/3f 0 þ ð/5 þ a1/2 þ a2/4 � a4/6Þf þ ða2/1 þ a3/2 þ a4/3Þhþ /1h0: ð19Þ

Next we subtract /2 times the right hand side of (1) from both sides of (19) to get
/2L1ðf ; hÞ ¼ �ð/3 þ a2/2Þf 0 þ ð/5 þ a2/4 � a4/6Þf þ ða2/1 þ a4/3Þhþ ð/1 � a4/2Þh0; ð20Þ
where L1ðf ; hÞ is the differential equation (1). We now use (16) and (17) to substitute for f 0 and h0 so that we
may write
/2
2L1ðf ; hÞ ¼ ð/2/5 � /1/6 � /3/4Þf : ð21Þ
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We now recognise from (9) that we have an identity
/2/5 � /1/6 � /3/4 � 0; ð22Þ

as pointed out by Ng and Reid [2]. Hence Eq. (1) holds. Similarly, using the same identity, for (2).

We shall now assume that the initial condition hðaÞ ¼ ha has been chosen so that the boundary condition
(5) is satisfied. It remains to be shown that the remaining boundary condition (6) is also satisfied. To do this we
first consider (5) and write, using (16)
/2ðc1f 0 þ c2f þ c3hÞ ¼ c1ð/4f þ /1hÞ þ /2ðc2f þ c3hÞ;
¼ ðc1/4 þ c2/2Þf þ ðc1/1 þ c3/2Þh ¼ 0; x ¼ b:

ð23Þ
For the left hand side of the remaining boundary condition (6) we have
/2ðd1h0 þ d2f þ d3hÞ ¼ ðd2/2 � d1/6Þf þ ðd1/3 þ d3/2Þh: ð24Þ

Now use (23) to substitute for h in the right hand side of (24) so that
/2ðd1h0 þ d2f þ d3hÞ ¼ ðd2/2 � d1/6Þðc1/1 þ c3/2Þ � ðd1/3 þ d3/2Þðc1/4 þ c2/2Þ
ðc1/1 þ c3/2Þ

f ; ð25Þ
or, by rearranging
/2ðc1/1 þ c3/2Þðd1h0 þ d2f þ d3hÞ ¼ fc1ðd2/1/2 � d1ð/1/6 þ /3/4Þ � d3/2/4Þ � c2/2ðd1/3 þ d3/2Þ
þ c3/2ðd2/2 � d1/6Þgf : ð26Þ
Using the identity (22) this becomes
ðc1/1 þ c3/2Þðd1h0 þ d2f þ d3hÞ ¼ fc1ð�d1/5 þ d2/1 � d3/4Þ � c2ðd1/3 þ d3/2Þ þ c3ðd2/2 � d1/6Þgf :
ð27Þ
We see from the target condition (15) that the right hand side of (27) is identically zero and so the second
boundary condition is satisfied, provided that ðc1/1 þ c3/2Þ is not zero at x ¼ b.

To summarise, the method for determining f and h is to normalise the solution by setting f ðaÞ ¼ 1 then
choose a value for hðaÞ ¼ ha, integrate Eqs. (16) and (17) to x ¼ b and then adjust the value of ha to ensure
that one of (5) or (6) is satisfied. We may, of course, choose some equivalent combination of the two boundary
conditions. For the examples considered below we simply repeat the calculation twice, successively using one
of the boundary conditions. We then calculate the residuals produced by the two boundary conditions and
take the solution which produces the smallest residual. In practice the difference between the two residuals
is small.

4. Examples

The purpose of this section is first to verify that the compound matrix method does work and secondly to
compare the results it gives with one other possible approach.

4.1. A simple artificial example

As a first trivial example we consider the problem given by
f 00 ¼ ðh� f Þ=2; ð28Þ
h00 ¼ ðf � hÞ=2; ð29Þ
with
f 0 þ h ¼ 0; x ¼ 0; ð30Þ
h0 þ f ¼ 0; x ¼ 0 ð31Þ
and



Table
Errors

k
f ðpÞ
hð0Þ
hðpÞ
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f 0 þ h ¼ 0; x ¼ p; ð32Þ
h0 þ kf ¼ 0; x ¼ p: ð33Þ
It is easy to show that the solution is zero unless the parameter k ¼ 1. In this case the solution normalised so
that f ð0Þ ¼ 1 is given by
f ¼ sin xþ cos x; h ¼ �ðsin xþ cos xÞ: ð34Þ

In Table 1. we give the errors in calculating first k and then f ðpÞ, hð0Þ and hðpÞ using two methods. Firstly,

the determinantal method. Briefly, this method starts with the solution for f ðxÞ and hðxÞ in the form (7) and
(8). For this method the functions f i, hi, i ¼ 1; 2; are obtained numerically by integrating (1) and (2) twice.
Each time we regard the system as an initial value problem with two linearly independent initial conditions
which incorporate the boundary conditions (3) and (4). We substitute these two solutions into the two remain-
ing boundary conditions (5) and (6). This gives two homogeneous equations for the constants C1 and C2. For
non-trivial solutions we then set the appropriate 2 � 2 determinant to be zero. This determines the critical
value for k. With this critical value for k we compute the 2� 2 coefficient matrix and determine its eigenvalues
and eigenvectors. At least one eigenvalue will be close to zero, we take the smallest eigenvalue and the corre-
sponding eigenvector to give C1, C2 and hence f ðxÞ and hðxÞ from (7) and (8).

The results in Table 1 clearly show that both methods can obtain reasonable results. It is difficult to make a
direct comparison between the two methods as they are quite different. For example, the routine to find the
eigenvectors for the determinantal method just uses machine accuracy while the differential equation solvers in
the compound matrix method require a specified tolerance. Asking for consistently more accurate results can
improve the compound matrix results at the expense of speed but there is a limit when the differential equation
routines start to have difficulty in achieving the required accuracy. Here we are using a simple fourth order
Runge Kutter Fehlberg method. There is some scope for using more accurate methods to improve the results.

4.2. A tube under axial compression

In [6] we looked at the problem of a circular tube that was compressed between ‘‘greased end plates”. The
tube will deform into a shorter circular tube until some critical deformation is reached when it may buckle into
one or more distinct modes. (For longer tubes we recover the familiar Euler strut flexural mode but there are
other possibilities). For this example we choose a number of physical parameters so that we only have to con-
sider the axial stretch which we will call k ¼(original length)/(deformed length) of the tube with 0 < k < 1.

The tube is composed of an unconstrained elastic material with strain–energy function
W ¼ l
2
ðI1 � 3Þ � ðjþ l=3Þ logðJÞ � ð2l=3� jÞðJ � 1Þ; ð35Þ
where I1 ¼ k2
1 þ k2

2 þ k2
3, J ¼ k1k2k3 and ki, i ¼ 1; 2; 3 are the principal stretches and, for this problem, k ¼ k3.

Here we normalise the strain–energy by taking the shear modulus l ¼ 1 and we consider a highly compressible
material with a bulk modulus j ¼ 5. The cylindrical tube has a non-dimensionalised undeformed outer radius
B ¼ 1 and an undeformed inner radius A ¼ 2=3. The undeformed length of the short tube (disc) is taken to be
p=7.

With these choices of parameters the incremental equations have the explicit form
ð96kþ 208k2Þr2f 00 þ ð96kþ 208k2Þrf 0 þ ðð�1911k2 � 441kÞr2 � 208k2 � 96kÞf þ ð1456kþ 336Þr2h0

ð36Þ
1
in the determinantal and compound matrix methods

Determinantal Compound matrices

4:2� 10�8 1:1� 10�7

8:5� 10�8 1:7� 10�7

1:3� 10�7 4:3� 10�9

1:1� 10�7 1:6� 10�7
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and
48h00k2r þ ð�1456k2 � 336kÞrf 0 þ ð�1456k2 � 336kÞf þ 48h0k2 þ ð�2352� 10192k� 441k2 � 1911k3Þhr;

ð37Þ

where f ðrÞ and hðrÞ are the incremental displacements in the radial and axial directions and r is the deformed
radial coordinate. The exact solution can be written
f ðrÞ ¼ C1I1

7k1r
k

� �
þ C2I1

7k2r
k

� �
þ C3K1

7k1r
k

� �
þ C4K1

7k2r
k

� �
f ðrÞ ð38Þ
and
16k1k2ð3þ 13kÞhðrÞ ¼ ð�16ð6þ 13kÞk2
1 þ 3k2ð3þ 13kÞÞI0

7k1r
k

� �
C1 þ ð�16ð6þ 13kÞk2

2

þ 3k2ð3þ 13kÞÞI0

7k2r
k

� �
C2 þ ð16ð6þ 13kÞk2

1 � 3k2ð3þ 13kÞÞK0

7k1r
k

� �
C3

þ ð16ð6þ 13kÞk2
2 � 3k2ð3þ 13kÞÞK0

7k2r
k

� �
C4; ð39Þ
where C1, C2, C3 and C4 are constants
k1 ¼
k
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 13k
p

;

k2 ¼
1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9k2 þ 39k3 þ 48þ 208k

6þ 13k

s ð40Þ
and I0, I1, K0 and K1 are modified Bessel functions of the first and second kind. The boundary conditions are
ð6þ 13kÞrf 0 þ 13kf þ 91rh; r ¼ a; b ð41Þ

and
kh0 � 7f ; r ¼ a; b; ð42Þ
where a ¼ 8=3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 13k
p

and b ¼ 4=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 13k
p

.
Although this problem admits an exact solution in terms of Bessel functions we still have to evaluate the

zero’s of a 4� 4 determinant in order to find the bifurcation parameter k. Having found k we compute the
4� 4 matrix and find the eigenvector corresponding to the smallest eigenvalue (which, ideally, will be zero)
for the constants Ci. In this case the numerical methods used for the evaluation of the eigenvalues and eigen-
vectors give an imaginary part that is identically zero. This is an exceptional case and normally both eigen-
values and eigenvectors could be expected to have small imaginary parts. Given that the problem is purely
real any such imaginary components of the solution can be ignored and regarded as an unavoidable numerical
error.

Since we do not have a simple numerical evaluation of the exact results we cannot be sure that they will be
anymore accurate than either of the two other methods that we consider. For this reason we simply present the
real parts of the solutions in Table 2. For the results presented in Table 2 we have set the tolerances for the
differential equation solvers in the compound matrix method to be small enough for a relative error of
5� 10�7. There are two distinct solutions for the parameter k and we give both of these. As we can see from
Table 2 all three methods give very similar results for the first bifurcation point with the exact solution and the
compound matrix method giving marginally closer results than the determinantal method. This is reversed at
the second bifurcation point where the compound matrix method gives slightly different results at the end of
the range, that is, for f ðbÞ and hðbÞ. However, if we decrease the tolerance in all of the differential equation
solvers the compound matrix solutions do move towards the other two solutions. For example with a relative
error tolerance set at ¼ 1� 10�10 then f ðbÞ=f ðaÞ ¼ �0:6981119 and hðbÞ=f ðaÞ ¼ �0:4171635 and all of the
results agree to five significant figures.



Table 2
Solutions obtained from the exact solution, the compound matrix method and the determinantal method: rounded to seven figures

Exact Compound matrices Determinantal

k 0.5980753 0.5980754 0.5980753
f ðbÞ 0.9258547 0.9258547 0.9258545
hðaÞ �0.7286607 �0.7286607 �0.7286607
hðbÞ 0.5754328 0.5754328 0.5754326
Second root

k 0.3842477 0.3842477 0.3842477
f ðbÞ �0.6981094 �0.6981428 �0.6981098
hðaÞ �0.6599870 �0.6599868 �0.6599870
hðbÞ �0.4171616 �0.4171754 �0.4171618
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5. Concluding remarks

We have established that the compound matrix method for eigenfunctions proposed in [2,3] for fourth
order problems in fluid mechanics can be developed to deal with similar problems in elasticity. The new fea-
ture of the method is the approach to the boundary conditions.

The two methods we have looked at for elasticity problems both produce satisfactory results. It is surprising
how well the determinantal method does, particularly for the second bifurcation point where we are looking at
extreme deformations (k ’ 0:4 represents a cylinder that has been reduced to only 40% of its original height).
This is due to the fact that we only have to deal with a 2� 2 matrix. Many current problems of interest within
elasticity involve multi-component systems, an artery, for example, is modelled by a three layer system. Anal-
ysis of such systems can lead to differential systems of 12th order for the axisymmetric case and a 6� 6 matrix.
We might reasonable expect the accuracy and reliability of the determinantal method to be inversely propor-
tional to the order of the system. In contrast the compound matrix method should simply scale up with no loss
of accuracy, at least for the eigenvalue problem. However, it is not immediately apparent how the compound
matrix eigenfunction method can be applied to higher order systems. This is the topic of a companion paper.
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